SAFE HANDS \& IIT-ian's PACE

MONTHLY MAJOR TEST-07 (JEE) ANS KEY Dt. 05-05-2023

PHYSICS		CHEMISTRY		MATHS	
Q. No.	[ANS]	Q. No.	[ANS]	Q. No.	[ANS]
1	C	31	C	61	C
2	B	32	C	62	C
3	B	33	B	63	B
4	D	34	D	64	A
5	A	35	D	65	C
6	B	36	A	66	D
7	A	37	C	67	B
8	B	38	C	68	A
9	A	39	B	69	D
10	B	40	D	70	C
11	D	41	B	71	B
12	C	42	B	72	D
13	C	43	B	73	D
14	A	44	A	74	C
15	B	45	C	75	C
16	D	46	C	76	C
17	B	47	D	77	D
18	A	48	B	78	B
19	C	49	C	79	C
20	B	50	D	80	A
21	5	51	14.3	81	4
22	8.9	52	5	82	206
23	150	53	-235.43	83	179
24	0.5	54	5	84	75
25	2	55	4	85	0
26	8	56	14.5	86	31
27	75	57	3.3	87	483
28	30	58	600	88	321
29	10	59	10	89	6
30	1.5	60	49	90	2

PHYSICS SOLUTIONS

1. C
2. B
3. B
4. Let s be the total distance . Let ($s / 3$) distance be covered in time t_{1} while the remaining distance ($2 \mathrm{~s} / 3$) in time t_{2} second.

$$
\begin{align*}
& \text { Now }\left(\frac{s}{3}\right)=v_{0} t_{1} \text { or } t_{1}=\frac{s}{3 v_{0}} \tag{1}\\
& \text { and }\left(\frac{2 s}{3}\right)=v_{1}\left(\frac{t_{2}}{2}\right)+v_{2}\left(\frac{t_{2}}{2}\right) \\
& \text { or } t_{2}=\frac{4 s}{3\left(v_{1}+v_{2}\right)} \tag{2}
\end{align*}
$$

$$
\begin{gathered}
\text { Average velocity }=\frac{s}{t_{1}+t_{2}}=\frac{s}{\frac{s}{3 v_{0}}+\frac{4 s}{\left(v_{1}+v_{2}\right)}} \\
=\frac{3 v_{0}\left(v_{1}+v_{2}\right)}{v_{1}+v_{2}+4 v_{0}}
\end{gathered}
$$

5. Let 'u' and 'a' be the initial velocity and acceleration of the body respectively. For first two second ($\mathrm{t}=2 \mathrm{sec}$), the distance covered is 200 cm .

Now using, $s=u t+\frac{1}{2} a t^{2}$
we have, $200=u(2)+(1 / 2) a(2)^{2}$

After four seconds of this journey i.e., after a time $t=6 \mathrm{sec}$
the distance covered is

$$
\begin{equation*}
200 \mathrm{~cm}+220 \mathrm{~cm}=420 \mathrm{~cm} . \tag{2}
\end{equation*}
$$

Hence $420=u(6)+(1 / 2) a(6)^{2}$
Solving equations (1) and (2),
we get, $\mathrm{u}=115 \mathrm{~cm} / \mathrm{sec}$ and $\mathrm{a}=-15 \mathrm{~cm} / \mathrm{sec}^{2}$ Now velocity after 7 seconds

$$
=u+a t=115+(-15) 7=10 \mathrm{~cm} / \mathrm{sec}
$$

Hence correct answer is (A)
06. Let x_{1} and x_{2} be the distance travelled by the car before they stop under deceleration. Using the formula $v^{2}=u^{2}+2 a s$, we have, $0=(10)^{2}-2 \times 2 \times x_{1}$
and $0=(12)^{2}-2 \times 2 \times x_{2}$
Solving we get,
$x_{1}=25$ metre and $x_{2}=36$ metre,
Total distance covered by the two cars $x_{1}+x_{2}=25+36=61$ metre

Distance between the two cars when they stop

$$
=150-61=89 \text { metre }
$$

Hence correct answer is (B)
07. The initial distance between the trains $=250 \mathrm{~m}$.

Before the application of brakes, the relative velocity of the passenger train with respect to goods train $=(40-20)=20 \mathrm{~m} / \mathrm{sec}$. When the brakes were applied (after reaction time), the distance between the trains

$$
=250-(20 \times 0.5)=240 \text { metre } .
$$

The relative acceleration of passenger train $=(-1-0)=-1 \mathrm{~m} / \mathrm{sec}^{2}$. The crash can only be avoided provided that after applying the brakes the relative velocity of the passenger train with respect to goods train becomes zero before the relative distance becomes zero.
Now applying the formula $v^{2}=u^{2}+2$ a s, we have $0=(20)^{2}-2 \times 1 \times s$
or $s=\frac{(20)^{2}}{2}=\frac{400}{2}=200$ metre
This is less than the distance between the trains before the application of brakes.
Hence the crash can be avoided.
Hence correct answer is (A).
08. b
09. Acceleration $=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{m}}=\frac{6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}}{10}$ in the direction of force and displacement

$$
\begin{aligned}
\overrightarrow{\mathrm{S}} & =\overrightarrow{\mathrm{u} t}+\frac{1}{2} \overrightarrow{\mathrm{at}}{ }^{2}=0+\frac{1}{2}\left(\frac{6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}}{10}\right) 100 \\
& =30 \hat{\mathrm{i}}+40 \hat{\mathrm{j}}
\end{aligned}
$$

So the displacement is 50 m along $\tan ^{-1} \frac{4}{3}$
with x-axis
Hence correct answer is (A)
10. $\mathbf{W}=\Delta(\mathrm{KE})$
11. d disp. of first particle after $2 \sec d_{1}=v_{1} t$
$=2(4 \hat{i}+3 \hat{j})=8 \hat{i}+6 \hat{j}$
Position after $2 \mathrm{sec}=\mathrm{r}_{1}+\mathrm{d}_{1}=(3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}})+(8 \hat{\mathrm{i}}+6 \hat{\mathrm{j}})$
$=11 \hat{i}+11 \hat{j}$
disp of sec particle after $2 \sec d_{2}=u_{2} t=2 a \hat{i}+14$ j

Position after $2 \mathrm{sec}=\mathrm{r}_{2}+\mathrm{d}_{2}=(2 a-5) \hat{i}+(14-3)$ j
for collision $2 a-5=1$

$$
a=8
$$

12. Two types of acceleration are experienced by the car
(i) Radial acceleration due to circular path,

$$
\mathrm{a}_{\mathrm{r}}=\frac{\mathrm{v}^{2}}{\mathrm{r}}=\frac{(30)^{2}}{500}=1.8 \mathrm{~m} / \mathrm{s}^{2}
$$

(ii) A tangential acceleration due to increase of tangential speed given by

$$
a_{t}=\Delta \mathrm{v} / \Delta \mathrm{t}=2 \mathrm{~m} / \mathrm{s}^{2}
$$

Radial and tangential acceleration are perpendicular to each other.
Net acceleration of car a
$=\sqrt{\mathrm{a}_{\mathrm{r}}^{2}+\mathrm{a}_{\mathrm{t}}^{2}}=\sqrt{(1.8)^{2}+(2)^{2}}=2.7 \mathrm{~m} / \mathrm{s}^{2}$
Hence correct answer is (C)
13. (C)

Consider the case of a body of mass m placed on the earth's surface (mass of the earth M
and radius R). If g is acceleration due to gravity, then
$\mathrm{mg}=\mathrm{G} \frac{\mathrm{M}_{\mathrm{e}} \mathrm{m}}{\mathrm{R}^{2}}$ or $\mathrm{g}=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}^{2}}$
where G is universal constant of gravitation. Now when the radius is reduced by 1%, i.e., radius becomes 0.99 R , let acceleration due to gravity be g^{\prime}, then

$$
\mathrm{g}^{\prime}=\frac{\mathrm{GM}_{\mathrm{e}}}{(0.99 \mathrm{R})^{2}}
$$

From equation (A) and (B), we get

$$
\begin{aligned}
& \frac{\mathrm{g}^{\prime}}{\mathrm{g}}=\frac{\mathrm{R}^{2}}{(0.99 \mathrm{R})^{2}}=\frac{1}{(0.99)^{2}} \\
& \mathrm{~g}^{\prime}=\mathrm{g} \times\left(\frac{1}{0.99}\right)^{2} \text { or } \mathrm{g}^{\prime}>\mathrm{g} \quad \text { Thus, the value }
\end{aligned}
$$

of g is increased.
14. a
15. Equation of S.H.M. $y=A \sin (\omega t+\phi)$
when displacement is half of amplitude

$$
\begin{aligned}
& \Rightarrow y=\frac{A}{2} \\
& \quad \frac{A}{2}=A \sin (\omega t+\phi) \\
& \sin (\omega t+\phi)=1 / 2 \\
& \omega t+\phi=30^{0} \text { or } 150^{0}
\end{aligned}
$$

When particles are in opposite direction at that moment, phase of both particle will be $30^{0} \& 120^{0}$ respectively.
Hence correct answer is (B)
16. At y displacement, velocity of particle is $v=\omega \sqrt{a^{2}-y^{2}}$
where ω is constant \& a is amplitude
if T is time period, then $\omega=2 \pi / \mathrm{T}$

$$
\begin{aligned}
\therefore \quad v & =\frac{2 \pi}{\mathrm{~T}} \sqrt{\mathrm{a}^{2}-\mathrm{y}^{2}} \\
& v=\frac{2 \times 22 / 7}{11 / 7} \sqrt{(10)^{2}-(0.6)^{2}} \\
\mathrm{v} & =3.2 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

kinetic energy of particle at displacement

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathrm{k} & =\frac{1}{2} \mathrm{mv}^{2} \\
\mathrm{k} & =\frac{1}{2} \times 0.8 \times(3.2)^{2} \\
\mathrm{k} & =4.1 \mathrm{~J}
\end{aligned} \\
& \text { Hence correct answer is (D) }
\end{aligned}
$$

17. Since temperature is varying linearly so

$$
\mathrm{T}=\frac{60}{10 \times 60} \mathrm{t}^{\circ} \mathrm{C} / \mathrm{sec} .=\frac{\mathrm{t}}{10}{ }^{\circ} \mathrm{C} / \mathrm{sec}
$$

Now,

$$
\frac{\mathrm{dH}}{\mathrm{dt}}=\frac{\mathrm{KA}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\ell}
$$

$$
\begin{aligned}
& \frac{\mathrm{dH}}{\mathrm{dt}}=\frac{\mathrm{KAT}}{\ell} \\
& \frac{\mathrm{dH}}{\mathrm{dt}}=\frac{\mathrm{KAt}}{10 \ell} \\
& \mathrm{H}=\frac{\mathrm{KAt}^{2}}{20 \ell} \\
&=\frac{200 \times 1 \times 10^{-4} \times(600)^{2}}{20 \times 20 \times 10^{-2}} \\
&=1800 \text { Joule }
\end{aligned}
$$

18. $\mathrm{Q}=\frac{\mathrm{KA}\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right) \mathrm{t}}{\mathrm{x}}$
$\Rightarrow 4800 \times 80=\frac{\mathrm{K} \times 3600 \times 100 \times 3600}{10}$
$\Rightarrow \mathrm{K}=0.003 \mathrm{cal} / \mathrm{cm} /{ }^{\circ} \mathrm{C}$
19. $E_{m} \propto T^{5}$ and $\lambda_{m} \propto \frac{1}{T}$ i.e. on increasing temperature λ_{m} decrease and E_{m} increases Hence the correct answer is (C).
20. b
21. The velocity v acquired by the parachutist after 10 s :

$$
\mathrm{v}=\mathrm{u}+\mathrm{gt}=0+10 \times 10=100 \mathrm{~ms}^{-1}
$$

Then, $\mathrm{s}_{1}=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2}=0+\frac{1}{2} \times 10 \times 10^{2}=$ 500m

The distance travelled by the parachutist under retardation is

$$
\mathrm{s}_{2}=2495-500=1995 \mathrm{~m}
$$

Let v_{g} be the velocity on reaching the ground. Then

$$
\mathrm{v}_{\mathrm{g}}^{2}-\mathrm{v}^{2}=2 \mathrm{as}_{2}
$$

or $\quad \mathrm{v}_{\mathrm{g}}^{2}-(100)^{2}=2 \times(-2.5) \times 1995 \quad$ or
$\mathrm{vg}=5 \mathrm{~ms}^{-1}$
22. $u_{x}=16 \cos 60^{\circ}=8 \mathrm{~ms}^{-1}$

Time taken to reach the wall $=8 / 8=1 \mathrm{~s}$
Now $u_{y}=16 \sin 60^{\circ}=8 \sqrt{3} \mathrm{~ms}^{-1}$
$\mathrm{h}=8 \sqrt{3} \times 1-\frac{1}{2} \times 10 \times 1=13.86-5=8.9 \mathrm{~m}$
23. If the plane makes an angle 6 with horizontal, then $\tan \theta=8 / 15$. If R is the normal reaction,
$R=170 \mathrm{~g} \cos \theta=170 \times 10 \times\left(\frac{15}{17}\right)=1500 \mathrm{~N}$
Force of friction on $\mathrm{A}=1500 \times 0.2=300 \mathrm{~N}$
Force of friction on $B=1500 \times 0.4=600 \mathrm{~N}$
Considering the two blocks as a system, the net force parallel to the plane is

$$
=2 \times 170 \mathrm{~g} \sin \theta-300-600=1600-
$$

$900=700 \mathrm{~N}$

$$
\therefore \quad \text { Acceleration }=\frac{700}{340}=\frac{35}{17} \mathrm{~ms}^{-2}
$$

Consider the motion of A alone.

$$
170 g \sin \theta-300-P=P 170 \times \frac{35}{17}
$$

(where P is pull on the bar)

$$
\mathrm{P}=500-350=150 \mathrm{~N}
$$

24. Retardation of train $=20 / 4=5 \mathrm{~ms}^{-2}$

It acts in the backward direction. Fictious force on suitcase $=5 \mathrm{~m}$ Newton, where m is the mass of suitcase.
In acts in the forward direction. Due to this force, the suitcase has a tendency to slide forward. If suitcase is not to slide, then $5 \mathrm{~m}=$ force f of friction

$$
\text { or } \quad 5 \mathrm{~m}=\mathrm{m} \mathrm{mg} \quad \text { or } \quad \mathrm{m}=\frac{5}{10}=0.5
$$

25. From work-energy theorem,

$$
\Delta \mathrm{KE}=\mathrm{W}_{\text {net }} \text { or } \mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}=\int \mathrm{Pdt}
$$

Or $\quad \frac{1}{2} \mathrm{mv}^{2}-0=\int_{0}^{2}\left(\frac{3}{2} \mathrm{t}^{2}\right) \mathrm{dt}$
Or $\quad v^{2}=\left|\frac{t^{3}}{2}\right|_{0}^{2} \quad$ or $\quad v=2 \mathrm{~ms}^{-1}$
26. From work-energy theorem, for upward motion $\frac{1}{2} \mathrm{~m}(16)^{2}=\mathrm{mgh}+\mathrm{W}$ (work done by air resistance) for downward motion,

$$
\begin{aligned}
\frac{1}{2} \mathrm{~m}(8)^{2} & =\mathrm{mgh}-\mathrm{W} \\
& \Rightarrow \quad \frac{1}{2}\left[(16)^{2}+(8)^{2}\right]=2 \mathrm{gh}
\end{aligned}
$$

$$
\text { or } \mathrm{h}=8 \mathrm{~m}
$$

27. The bullet and block will meet after time

$$
\mathrm{t}=\frac{\mathrm{h}}{\mathrm{u}_{\text {rel }}}=\frac{100}{100}=1
$$

During this time, distance travelled by the block,

$$
\mathrm{s}_{1}=\frac{1}{2} \mathrm{gt}^{2}=\frac{1}{2} \times 10 \times 1^{2}=5 \mathrm{~m}
$$

Distance travelled by the bullet,

$$
\mathrm{s}_{2}=100-\mathrm{s}_{1}=95 \mathrm{~m}
$$

Velocity of the bullet before collision,

$$
\mathrm{u}_{2}=\mathrm{u}-\mathrm{gt}=100-10 \times 1=90 \mathrm{~m} / \mathrm{s}
$$

Velocity of the block before collision,

$$
\mathrm{u}_{1}=\mathrm{gt}=10 \mathrm{~m} / \mathrm{s}
$$

Let V be the combined velocity after collision.

According to the law of conservation of momentum,

$$
\begin{array}{rlrl}
& \mathrm{m}_{1} \mathrm{u}_{1} & +\mathrm{m}_{2} \mathrm{u}_{2} & =\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{V} \\
\text { or } & 0.01 \times(-10) & +0.01 \times 90=0.02 \mathrm{~V}
\end{array}
$$

(Velocity in upward direction is considered positive.)
Solving, we get $\mathrm{V}=40 \mathrm{~m} / \mathrm{s}$.
Maximum height risen by the block $=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}=$ 80 m

Height reached above the top of the tower is $80-\mathrm{s}_{1}=80-5=75 \mathrm{~m}$
28. From conservation of momentum along incident direction

$$
\mathrm{m} \times 1=2 \mathrm{mv}_{2} \cos \theta
$$

(i)

From conservation of momentum along perpendicular direction,

$$
\begin{align*}
& \mathrm{m} \times 0+2 \mathrm{~m} \times 0=\mathrm{mv}_{1}-2 \mathrm{mv}_{2} \sin \theta \\
\Rightarrow \quad & \mathrm{v}_{1}=2 \mathrm{v}_{2} \sin \theta \tag{ii}
\end{align*}
$$

From energy conservation,

$$
\frac{1}{2} \mathrm{~m} \times(1)^{2}=\frac{1}{2} \mathrm{mv}_{1}^{2}+\frac{1}{2} 2 \mathrm{mv}_{2}^{2}
$$

(iii)

From Eqs. (i), (ii) and (iii), we get $\theta=30^{\circ}$.
29. The free-body diagram of the box w.r.t. the truck is as shown in Fig..

For vertical equilibrium, $\mathrm{mg}=\mathrm{N}$
For horizontal equilibrium, $\mathrm{f}=(\mathrm{mv}) / \mathrm{r}$
For rotational equilibrium, $\mathrm{f} \times 1=\mathrm{N} \times \mathrm{x}$
For no tipping to take place, $\mathrm{x}<(1 / 2) \mathrm{m}$
So, $\mathrm{mg} \times \mathrm{x}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \Rightarrow \quad \mathrm{x}=\frac{\mathrm{v}^{2}}{\mathrm{rg}}<\frac{1}{2}$

$$
\Rightarrow \quad \mathrm{v}<\sqrt{\frac{\mathrm{rg}}{2}}=10 \mathrm{~m} / \mathrm{s}
$$

30. 1.5
